
Chord: A Scalable Peer-to-peer Lookup Service

for Internet Applications by Stoica , Morris,

Karger, Kaashoek, Balakrishnan

CSC 724 Paper review - Vaibhav Singh, vsingh7

January 21, 2019

1 Summary

The paper presents Chord, a distributed data lookup protocol in which nodes
need to maintain membership information about a small amount of other nodes(O(logN)).
The consistency degrades gracefully if this condition is not maintained. The pa-
per also talks about Chord’s stabilization algorithm which ensures finger tables
are continuously updated, thereby ensuring nodes have knowledge of the state
of the system, and also addresses the issues of replication and load balancing.

2 Description

The base Chord protocol uses a primitive called consistent hashing which basi-
cally assigns each node and key an m-bit identifier taking the node’s IP address
as input, and using a base hashing function like SHA-1. The nodes are then
imagined to be arranged in order along a circle of numbers from 0 to 2 pow(m)
- 1 (m is a number large enough to ensure adequate load balancing). The nodes
need to keep information about successor of n + 2pow(i)th node, where i goes
from 1 to m. If a new node joins the system, some keys assigned to the new
node’s successor get assigned to the new node. When a node n leaves the net-
work, all nodes assigned to that node get assigned to its successor. In both
cases, O((log pow 2)N) messages are required for every node to re-establish up-
dated finger table state.
The stabilization algorithm in Chord looks for its successor’s (n) predecessor
p, and decides whether p should be its successor instead (for when p recently
joined the system). It also tells p of the presence of n to help initialize p’s finger
table.
When a new request comes to any node, the nodefirst checks if the requested
data is present in that node, then the node compares the hash of the key with
its own finger table, and sends the request to the closest node smaller than the
hash in its finger table, which in turn does the same until the data is either
found or the request fails.

1



3 Strong Points

Chord spreads keys evenly among nodes, thus providing automatic load balanc-
ing.
Chord lookup cost grows as log of number of nodes, thus providing scalability.
No node is more important than the other nodes, which provides Decentraliza-
tion and improves fault tolerance
As nodes continuously run stabilization algorithms to update their finger tables
to take into account nodes which joined or left recently, membership problem is
handled adequately.

4 Weak Points

O(logN) lookup time might still be quite high.
Chord does not take into account the geographic location of nodes, so nodes
which are geographically located close to each other may be placed far apart in
the ring and vice versa.
Stabilization time O(Npow2) is quite high.

5 Improvement

Chord can be improved to detect and heal partitions in rings.
A malicious or buggy set of participants can present an incorrect view of the
chord ring leading to denial of service.
Log(N) messages per lookup could be improved by creating finger tables with
distance 1 + 1/d instead of using powers of 2. This will lead to increase in
number of finger table entries by a factor of d though.

2


