
Distributed Snapshots: Determining Global

States of Distributed Systems by K. Mani

Chandy and Leslie Lamport

CSC 724 Paper review - Vaibhav Singh, vsingh7

January 13, 2019

1 Summary

The paper presents algorithms by which processes in a distributed system can
come together to determine the global state of the system. The processes do
not share common clock or memory.

2 Description

The paper defines a class of problems which are composed of *stable* proper-
ties i.e. if a statement is true at some point of time it remains true at all later
instances of time.
It defines a distributed system as a finite set of processes and finite set of chan-
nels.
Process is defined by a set of states, an initial state, and a set of events.
Event e is defined as an atomic operation which changes the state of originating
process p and at most one more channel incident on/to p.
Marker message is defined as a special message having no effect on the under-
lying computation and states of any process.
Global state of a distributed system is defined as a set of all component pro-
cesses and channel states.

Given the above definitions, The global state-detection algorithm is defined
as follows:
For each channel c connected to process p,
p first records its state and then sends marker messages along c, before sending
any further messages along c.
On receiving marker message along c, if recipient process q hasn’t recorded c’s
state, q records its own state and records state c as empty. Else q records
the state of c as the sequence of messages received along c after q’s state was
recorded and before q received the marker along c.

The paper then establishes proofs of global-state recording algorithm termi-
nating in finite time, given the assumptions that markers do not remain forever
in a channel and processes take a finite time in recording their states (both
reasonable).

1



3 Strong Points

The paper defines the relationship among local process states, global system
states, and points in a distributed computation. The algorithm defined in the
paper should work for a system working within the constraints of using a reliable
communication medium.

4 Weak Points

The paper assumes a lot of things, not all of which might be reasonable. For
example, Channels are assumed to have infinite memory (buffers), to be error
free, to deliver messages in the order sent.
The paper also assumes no failures occurring among processes or channels (for
example a system using *best-effort* communication protocols like UDP).
The algorithm also works only for a class of systems which behave causally i.e.
systems having stable properties.
The number of messages increases polynomially with increase in number of
processes (as each process will have to take into account the states of every other
process in the system). This can lead to substantial bandwidth consumption to
get distributed snapshot for a lage enough number of processes in the system.

5 Improvement

As mentioned in [1] The limitation of messages being ordered can be addressed
by using techniques like message inhibition [2], or piggybacking of control infor-
mation on computation messages to capture out-of-sequence messages.

References

[1] Ajay D Kshemkalyanit, Michel Raynalt and Mukesh Singhal, An introduc-
tion to snapshot algorithms in distributed computing.

[2] Helary I-M, Observing global states of asynchronous distributed applications
Proc. 3rd Int. Workshop on Distributed Algorithms, LNCS 392 (Berlin:
Springer) pp 124-34

2


